올해 12월에 뉴올리언스에서 열리는 NeurIPS 2023에 아래 논문이 채택되었습니다.
이 논문은 딥러닝 초기에 중요한 역할을 했던 tanh 활성화 함수가 왜 ReLU 등 그 이후의 활성화 함수에 비해서 상대적으로 성능이 좋지 않은지 그 이유를 분석합니다. 또한, 그 단점들을 극복하고, ReLU 활성화 함수와 비슷한 성능을 달성하는 방법을 제시합니다. 결론적으로 활성화 함수의 비대칭성이 얼마나 중요한지를 보여주며, 이를 통해 활성화 함수에 대한 이해를 깊게 하고 있습니다.
"Tanh Works Better with Asymmetry"