Text Embeddings Reveal (Almost) As Much As Text (EMNLP 2023)

카테고리 없음 2024. 1. 4. 07:08 Posted by 김치말이삼겹살

안녕하세요. KDST팀에서 학점연계 현장실습 인턴을 하고 있는 성균관대학교 데이터사이언스융합전공 김지환입니다. 제가 이번에 소개드릴 논문은 이번 EMNLP 2023에 억셉된 논문인 'Text Embeddings Reveal (Almost) As Much As Text'입니다. 

 

논문 링크(arxiv): Text Embeddings Reveal (Almost) As Much As Text

github 링크: https://github.com/jxmorris12/vec2text

 

이 논문에서는 기존에는 잘 되지 않았던, text를 embedding한 vector로부터 원본 텍스트로 복원하는 embedding inversion problem을 다루고 있습니다. 본 논문에서는 이 문제를 통제된 생성; 즉 잠재 공간 내에서 고정된 벡터에 가까워지도록 텍스트를 생성하는 문제로 규정하여 해결합니다.

 

이 문제를 해결하기 위해 저자들은 Vec2Text라는 방법론을 제안합니다. 반복적으로 텍스트 임베딩을 교정하고 텍스트로 다시 임베딩하는 방식입니다. 대략적인 컨셉은 아래 그림과 같습니다.

 

 

저자들은 Vec2Text라는 방법을 사용하여 32개의 토큰 텍스트에 대하여 text embedding으로부터 원본 텍스트의 92%까지 복원하는데 성공하였고, clinical note 데이터셋에서 임의처리한 개인 정보를 복원하는 데 성공했다고 주장하며, 의료 분야와 같은 민감한 도메인에서 임베딩 벡터도 원본 텍스트와 동일하게 데이터 프라이버시 보호를 위한 조치가 필요하다고 강조했습니다.

 

추가적으로, 본 논문에서는 위와 같은 텍스트 임베딩으로부터 원본 텍스트를 생성하여 데이터 프라이버시가 침해되는 문제, 즉 inversion attack을 해결하기 위해, 0.1에서 0.01과 같은 낮은 수준의 노이즈를 주입하는 방법을 제안합니다.

 

 

하지만 저자들이 제안한 Vec2Text 방법에는 몇가지 한계가 존재합니다.

 

우선 임베딩으로부터 텍스트를 reconstruct하는 과정에서는 noise를 주입해서 학습하지 않았기 때문에, 만약 noise를 주입하여 텍스트를 생성하도록 학습했을 때는 inversion attack에 어떤 양상이 나올지 모른다는 점입니다.

 

그리고 현재 LLM을 통해서 생성하는 텍스트의 토큰 길이는 수천 토큰 이상으로 긴데, 아직 32개의 토큰에서 128개의 토큰까지의 복원을 하지 못했다는 점, 그리고 저자들은 iteration 수를 50회와, beam search 시 beam의 용량을 8회로 한정했다는 점에서 각각 long text에 대한 scablility, 그리고 search thoroughness에 대한 한계가 있습니다.

 

또한 이 상황의 경우에는 모델과 원본 텍스트, 원본 텍스트에 대한 임베딩 벡터에 대한 접근이 가능하다는 전제가 있기 때문에, 모델 접근이 가능하다는 점을 염두한 상황이라는 점에서 다소 한정적인 상황에서만 사용이 가능하다는 점이 한계입니다.

 

개인적으로는 텍스트 임베딩으로부터 원본 텍스트 토큰을 복원하는, 새로운 패러다임을 제시한 논문이라는 생각이 듭니다.

 

자세한 내용은 논문을 참조해보시면 좋을 것 같습니다. 읽어주셔서 감사합니다.

 

 

 

Two papers accepted at AAAI 2024

카테고리 없음 2023. 12. 31. 13:15 Posted by KDST

내년 2월에 밴쿠버에서 열리는 AAAI 2024 학회에 작년에 이어 또 다시 2편의 논문을 발표하게 되었습니다. 

올 한해도 모두들 수고하셨고 저희 블로그 방문해 주시는 분들도 새해 복 많이 받으세요~!

"REPrune: Channel Pruning via Kernel Representative Selection"

"Catch-up Mix: Catch-up Class for Struggling Filters in CNN"

 

 

 

안녕하세요 KDST 학부연구생 구미진입니다.

 

오늘 소개해드릴 논문은 CVPR 2023 Highlight 논문인 Feature Separation and Recalibration for Adversarial Robustness 입니다.

 

본 논문에서는 적대적 공격에 대한 방어 방법 중 Adversarial Training 방법과 결합해서 사용할 수 있는 FSR 모듈을 제안했습니다.

 

Motivation

딥러닝 모델은 위 그림처럼 이미지의 Feature representation을 학습하여 의사 결정을 내립니다. 적대적 공격은 이미지에 미세한 노이즈를 추가하여 모델의 오분류를 유도하는데, 기존의 방어 방법은 변화가 생긴 활성화를 그냥 무시함으로써 공격에 대응하고자 했습니다. 그러나 이 방법은 중요한 정보의 손실을 초래할 우려가 있어, 이 논문에서는 더 어댑티브한 방법을 제안합니다.

 

적대적 공격으로 인한 활성화의 변화를 무시하는 대신, 해당 변화에서 유용한 정보를 추출하여 모델이 올바른 예측을 할 수 있도록 재보정하는 새로운 방식을 도입했습니다.

 

본 논문의 contribution은 다음과 같습니다.

1. 중요한 정보가 소실되는 기존의 방법에 대한 새로운 접근 방식을 제안함

2. easy-to-plugin, 다른 adversarial training method와 결합해서 사용 가능함

3. White box attack과 Black box attack 모두에 대한 효과적인 방어 성능을 실험적으로 입증함

 

Proposed Approach

레이어 간에 FSR 모듈을 추가하여 Feature를 robust feature와 non-robust feature로 분리하고, non-robust feature를 재보정하여 모델 예측에 사용합니다.

 

모듈은 크게 separation stage와 recalibration stage로 나뉩니다. Separation network S는 robustness map과 dot product 연산을 통해 robust, non-robust feature를 분리하며, Separation loss를 활용해 학습됩니다. Recalibration network R은 non-robust feature에서 중요한 정보를 추출하고, recalibration loss를 통해 학습됩니다.

 

각각을 어떻게 구현한 건지 살펴보면 다음과 같습니다.

Separation Stage
Recalibration Stage

 

FSR module은 다른 네트워크와 결합되어 end-to-end로 학습되어 사용할 수 있으므로 다른 Adversarial training framework에도 같이 사용할 수 있습니다. 이때 사용하는 Loss function은 classification, feature separation, recalibration loss를 모두 합쳐 놓은 형태입니다.

 

Limitation

Adversarial defense의 고질적인 문제이기도 한데, 바로 natural image에 대한 성능 저하가 있다는 것이 이 연구의 한계로 언급됩니다. FSR 모듈은 모든 이미지에 adversarial perturbation이 있다는 가정 하에 동작하므로, natural image의 정확도는 감소합니다. 하지만 occasionally하게 데이터셋과 adversarial training method에 따라 오히려 정확도가 증가하는 경우도 있긴 했습니다.

One paper accepted at NeurIPS 2023

카테고리 없음 2023. 11. 26. 17:45 Posted by KDST

올해 12월에 뉴올리언스에서 열리는 NeurIPS 2023에 아래 논문이 채택되었습니다. 

이 논문은 딥러닝 초기에 중요한 역할을 했던 tanh 활성화 함수가 왜 ReLU 등 그 이후의 활성화 함수에 비해서 상대적으로 성능이 좋지 않은지 그 이유를 분석합니다. 또한, 그 단점들을 극복하고, ReLU 활성화 함수와 비슷한 성능을 달성하는 방법을 제시합니다. 결론적으로 활성화 함수의 비대칭성이 얼마나 중요한지를 보여주며, 이를 통해 활성화 함수에 대한 이해를 깊게 하고 있습니다.

 

"Tanh Works Better with Asymmetry"

 

안녕하세요, KDST 김동진입니다.

 

오늘 소개해드릴 논문 What Can Transformers Learn In-Context? A Case Study of Simple Function Classes

 NeurIPS2022에서 좋은 평가를 받은 논문입니다.

 

GPT-3 모델의 등장으로 번역과 같은 다양한 downstream task에서 Zero-shot 또는 few-shot으로도 준수한 성능을 낼 수 있게 되었습니다. 이러한 발전으로 prompt engineering에 관한 관심 또한 높아졌으며, 이번 논문은 prompt engineering의 방식 중 하나인 in-context learning에 관한 내용입니다. (In-context learing이란 모델의 weight가 update가 되지 않는 상황에서 query 입력과 in-context 예제로 구성된 prompt에서 in-context 예제들을 기반으로 query에 대한 예측을 수행하는 것을 말합니다.)

 

논문의 주요 내용은 아래와 같습니다. 

본 논문은 in-context learning을 inference 때에 새로운 함수를 학습하는 문제로 정의하고, 구성된 실험을 통해 GPT 모델이 in-context learing을 통해 간단한 함수들(linear function, sparse linear function, decision tree, 2-layer NN)을 특정 가중치를 넘어서 해당 함수들의 class에 대한 학습을 꽤 잘 수행할 수 있음을 보여줍니다.

 

또한, 더 나아가 training 때와 inference때의 함수와 입력 분포의 차이 그리고 inference때 in-context example과 query의 입력 분포의 차이가 존재하는 상황에서의 in-context learning에 대한 실험도 진행하였습니다. 개인적인 생각으로 training과 inference때의 분포 차이를 만들어낸 실험에서도 좋은 성능을 보이는 것으로 보아 in-context learning이 training 데이터에 대한 memorization에 의존하지 않는다는 것을 보여주는 것 같아 흥미로웠습니다.

 

논문에서 진행된 실험들이 자연어를 다루지는 않아 실험 결과들이 우리에게 친숙하게 다가오지는 않을 수 있지만, decoder-only transformer 모델의 in-context learning에 대한 가능성을 실험적으로 보여주어 다른 분들도 읽어보시길 추천해 드립니다. 감사합니다.