이전 게시물 : IndIndustrial Anomaly Detection : Survey part 1 저번 게시물에 이어 Bearing Fault Diagnosis 관련 논문을 소개합니다. 저번 게시물에서도 말씀드렸다시피 베어링의 이상을 감지하기 위해서는 여러 종류의 센서 데이터를 사용할 수 있고, 그중에서도 진동 센서 데이터를 가장 많이 사용합니다. 이 분야에서 가장 많이 사용되어 왔던 방법론은 먼저 feature extractor로 모델의 인풋으로 들어갈 피쳐를 추출한 다음, classification 알고리즘을 적용한 것입니다. 저번 게시물에서 autoencoder 기반 방법론을 다루었고, 이번 게시물에서는 CNN 기반 방법론을 소개합니다. Gearbox fault identification and..