Search

'anomaly detection'에 해당되는 글 2건

  1. 2019.07.29 Industrial Anomaly Detection : Survey part 2 1
  2. 2019.07.25 Industrial Anomaly Detection : Survey part 1

이전 게시물 : IndIndustrial Anomaly Detection : Survey part 1

 

저번 게시물에 이어 Bearing Fault Diagnosis 관련 논문을 소개합니다. 저번 게시물에서도 말씀드렸다시피 베어링의 이상을 감지하기 위해서는 여러 종류의 센서 데이터를 사용할 수 있고, 그중에서도 진동 센서 데이터를 가장 많이 사용합니다. 이 분야에서 가장 많이 사용되어 왔던 방법론은 먼저 feature extractor로 모델의 인풋으로 들어갈 피쳐를 추출한 다음, classification 알고리즘을 적용한 것입니다. 저번 게시물에서 autoencoder 기반 방법론을 다루었고, 이번 게시물에서는 CNN 기반 방법론을 소개합니다.

 

 

Gearbox fault identification and classification with convolutional neural networks, Chen et al. (2015)


이 논문에서는 gearbox의 이상을 확인하기 위해 2D-CNN을 사용했습니다. 256차원의 통계 피쳐를 추출한 후 이를 16x16 차원의 input matrix로 변환합니다. 시간 도메인에서는 standard deviation, skewness, kurtosis와 같은 통계 피쳐를 추출하였고, frequency domain에서는 Fast Fourier Transform을 수행한 후 이를 몇 개의 band로 나눠서 각 band에 대해 RMS값을 피쳐로 사용하였습니다.

 

 

Convolutional Neural Network Based Fault Detection for Rotating Machinery, Janssens et al. (2016)


이 논문에서는 먼저 feature-learning 방식과 feature-engineering 방식을 비교하였습니다. feature-engineering 방식은 input data에서 feature를 추출한 다음, 이를 분류 모델에 넣는 방식인데 앞서 보았던 많은 논문에서 이와 같은 방법을 사용했습니다. 반면 feature-learning 방식은 먼저 feature를 추출하지 않고, input data를 여러 번 transform 함으로써 이를 모델의 인풋으로 사용하는 방식입니다. 이 논문에서 말하기를 feature-learning 방식이 기존의 feature-engineering 방식보다 훨씬 좋은 성능을 보였다고 합니다.

 

 

Deep convolutional neural network based regression approach for estimation of remaining useful life, Babu et al (2016)


기계의 상태를 분류하는 앞선 논문의 모델과는 다르게, 이 논문에서는 잔여 수명(Remaining Useful Life)을 예측하는 모델을 만들었습니다. 따라서 분류 모델 대신 회귀 모델을 쓰고, 마지막 layer로는 linear regression layer를 사용합니다.

 

 

Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Guo et al. (2016)


이 논문에서는 계층적인 fault diagnosis 모델인 hierarchical adaptive deep convolution neural network(ADCNN)을 만들었습니다. 먼저 비정상의 종류를 판별하는 ADCNN을 하나 두고, 3개의 비정상 상태에 대하여 각각의 ADCNN이 비정상의 정도를 판단하게 됩니다.

 

 

A multi-scale convolution neural network for featureless fault diagnosis, Wang et al. (2016)


이 논문에서는 CNN 모델이 더 좋은 성능을 내게 하기 위해서 적용할 수 있는 몇 가지 테크닉을 제시하였습니다.

 

 

Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection, Weimer et al. (2016)


이 논문에서는 앞서 제시된 CNN 모델들의 최적 configuration을 탐색하였습니다. 모델의 깊이(convolutional layer의 개수)와 너비(filter의 개수)의 두 가지 측면에서 최적의 configuration을 제시하였습니다.

 

 

Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, Ding et al (2017)


이 논문에서는 CNN의 input으로 WPE(Wavelet Packet Energy) image를 사용하였습니다. WPE의 계층적인 특성을 잘 반영하기 위하여 convolution layer의 마지막에 multiscale layer를 추가하였습니다.

 

 

A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load, Zhang et al. (2018)


이 논문에서 제시한 방법은 noisy한 signal에 대해서도 잘 동작하며, 사전에 noise를 없애기 위해서 추가적인 작업을 할 필요가 없습니다. 각 convolution layer의 output을 좌표평면에 나타내 보면, layer를 통과할수록 각 상태에 해당하는 점들이 확연히 잘 구분되는 것을 볼 수 있습니다.

 

 

이상으로 Industrial Anomaly Detection, 그중에서도 Bearing Fault Diagnosis를 다룬 논문들에 대해 살펴보았습니다. 논문은 임의로 선정하였기 때문에 혹시 놓친 중요한 논문이 있다면 댓글로 알려주시기 바랍니다. 감사합니다.

   이 글에서는 Industrial Anomaly Detection 관련 논문 경향을 살펴보도록 하겠습니다. 풍력 발전용 터빈, 발전소, 고온 에너지 시스템, 저장 장치, 회전 기계 부품 등 산업 현장에서 사용되는 기기들은 매일 엄청난 스트레스를 받습니다. 따라서 기기에 이상이 있는지를 미리 알아내는 것이 굉장히 중요합니다. 그런데 anomaly는 자주 발생하지 않고, 여러 가지 이유로 인해 이상이 발생하기 때문에 이를 미리 예측하기가 어렵습니다. 최근 이러한 rare event를 예측하기 위해 여러 Neural Net 기반 알고리즘이 널리 사용되고 있습니다.

   Industrial Anomaly의 범위는 굉장히 넓습니다. 간단하게는 센서의 출력인 1차원 벡터부터, 사진 혹은 영상과 같은 복잡한 데이터를 입력으로 받을 수도 있습니다. 따라서 범위를 조금 좁혀서 'Bearing Fault Detection' 관련 논문에 대한 경향을 조사했습니다. 베어링은 모든 모터 및 기타 회전 시스템에서 중요한 역할을 합니다. 베어링의 이상을 탐지하기 위해 여러 지표를 사용하는데, 베어링의 진동을 모니터하는 경우가 많습니다. 'Bearing Fault Detection' 대신 'Machinery Health Monitering'이라는 용어를 사용하기도 합니다. 베어링 이상 탐지에 Neural Net을 사용한 논문들을 시간 순서대로 하나씩 보도록 하겠습니다. 

 

A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory, Li et al., 2016

Neural-network-based motor rolling bearing fault diagnosis, Li et al. (2000)


2000년에 발표된 Bearing vibration analysis에 Neural Network를 적용한 논문입니다. frequency domain에서 고속 푸리에 변환으로 feature를 추출하고 이를 1 layer Neural Net의 input으로 넣었습니다. input feature로는 6개를 사용했는데, 이는 뉴럴 넷을 통한 것이 아니라, 미리 정해져 있는 hand-crafted feature를 사용한 것입니다. Neural Net 모델의 output으로 세 가지 fault condition 중 하나를 결정하는 indicator를 출력합니다.

 

PCA-based feature selection scheme for machine defect classification, Malhi et al. (2004)


직전 논문과 달리 이 논문에서는 principal component analysis (PCA)에 기반하여 feature selection을 수행했습니다. 그 후 1 layer Fully Connected Neural Net과 K-means 알고리즘을 이용하여 anomly를 판별하였습니다.

 

Support vector machine in machine condition monitoring and fault diagnosis, Widodo et al (2007)


 이 논문은 Support Vector Machine을 사용하는 fault diagnosis 방법을 정리한 survey입니다. SVM은 분류 경계면과 데이터 포인트 사이의 거리를 최대화하는 기법입니다. kernel의 종류에 따라 경계면의 모양이 달라지게 됩니다. SVM은 feature extraction 능력이 약하기 때문에, 다른 방법으로 먼저 feature를 추출한 후, SVM을 사용한다고 합니다.

 

 

Fault Detection with Autoencoder


이제부터는 Fault Detection에 많이 사용되는 autoencoder 기반 논문을 소개하도록 하겠습니다. Autoencoder의 reconstruction error의 분포를 만들고, 값이 특정 수준 이상이면 anomaly라고 판단합니다. 이렇게 reconstruction error로 바로 anomaly를 판별하는 방식도 있고, 많은 논문에서는 antoencoder를 feature extractor로 사용합니다.

 

Bearing fault diagnosis method based on stacked autoencoder and softmax regression, Tao et al. (2015)


이 논문에서는 feature extractor로 2-layer Stacked Autoencoder를 사용하는데, 두 레이어의 hidden layer size와 dropout masking probability를 다르게 줍니다. 그 후 Softmax Regression을 사용하여 비정상 데이터를 탐지합니다. 앞의 논문들과 달리 feature를 추출하는 정해진 방법이 없고, 원형 센서 데이터를 그대로 모델의 인풋으로 넣어서 autoencoder가 특징을 배우도록 합니다.

 

Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Jia et al. (2016)


이 논문에서는 layer를 더 깊게 쌓았습니다. supervised learning에서 많이 하는 것처럼, autoencoder로 모델을 층층이 pre-train 시킨 후, supervised loss로 fine-tuning합니다.

 

Multi-sensor feature fusion for bearing fault diagnosis using sparse auto encoder and deep belief network, Chen et al. (2017)


이 논문에서는 SAE-DBN 구조를 사용합니다. 시간 도메인과 주파수 도메인의 피쳐가 각각 다른 센서 신호로부터 나옵니다. 비정상 탐지에 여러 종류의 데이터를 같이 활용한 것이죠. 이렇게 뽑은 피쳐를 2-layer sparse autoencoder에 넣어서 피쳐를 합친 후에 Deep Belief Network로 상태를 분류합니다.

 

Transformer fault diagnosis using continuous sparse autoencoder, Wang et al. (2016)


이 논문에서는 continuous sparse auto-encoder (CSAE)를 feature extractor로 사용하는데, sparse autoencoder에서 activation 함수를 씌우기 전에 확률 유닛을 하나 추가한 것입니다. 확률 유닛을 추가함으로써 gradient의 방향을 바꾸고, over-fitting을 방지할 수 있었다고 합니다.

 

Bearing fault diagnosis with autoencoder extreme learning machine: A comparative study, Mao et al. (2017)


이 논문에서는 Autoencoder로 뽑은 feature를 ELM의 input으로 넣습니다. ELM(Extreme Learning Machine)이란 gradient 기반 방식의 문제점을 개선하기 위해 고안된 알고리즘입니다. ELM에서는 H의 의사 역행렬을 구함으로써 back propagation 과정을 거치지 않고 적합한 값을 빠르게 찾을 수 있습니다. 따라서 진단 속도가 빠르다는 장점이 있습니다.

 

Comparison of Algorithms


출처 : Artificial intelligence for fault diagnosis of rotating machinery: A review, Liu et al., 2018 (paper)

 

Performance comparison of Algorithms


출처 : Artificial intelligence for fault diagnosis of rotating machinery: A review, Liu et al., 2018 (paper)

 

RNN on time series data


 

More Recent Papers


최근(2019년 5~6월)에 bearing fault detection 관련해서 나온 논문들은 크게 sparse autoencoder 혹은 CNN 중 하나를 사용하는 경향이 있습니다. 여기에 전통적인 SVM 방법이나 GAN과 같은 generative model을 사용하는 논문도 간혹 보입니다.

 

참고 자료