안녕하세요, KDST 팀원 김동진입니다. 괜찮은 논문을 읽게 되어 간략한 내용 공유해 드립니다. 해당 논문은 Transfer learning에서 fine-tuning이 언제 그리고 왜 linear proving보다 out-of-distribution에 대한 높은 error를 보이는지 이론 및 실험으로 잘 설명한 논문입니다. 논문에서는 fine-tuning 시 feature distortion이 발생하게 되고 이는 큰 out-of-distribution error를 가져와 linear probing에 비해 낮은 성능을 보이게 된다고 주장하였습니다. (feature distortion: feature가 특정 방향으로만 update 되는 현상. 여기서는 ID의 subspace 방향으로만 학습되는 것을 의미합니..