안녕하세요, KDST에서 학생 연구원으로 근무 중인 강민수입니다.

 

이번에 강민구 전문연구 요원님, 김동진 학생 연구원님과 함께 Team 'Machine Running'으로 함께 참여했던

성균관대학교 삼성융합의과학원(SAIHST) 디지털 헬스 학과와 디지털 헬스케어 파트너스(DHP)가 공동 주최하는 제 6회 Digital Health Hackathon 2021에서 공동 1위로 최우수상을 수상하였습니다.

 

해커톤 주제는 'bio-health simulation data를 이용하여 치료의 효과를 증가시키는 인과관계가 있는 유전자를 찾아내는 것'입니다.

 

환자 맞춤형 치료는 특히 암 환자의 맞춤형 항암 치료 분야에서 뚜렷한 성과를 보입니다. 이는 암 유전자 분석을 통해 변이 유전자에 타깃이 되는 약물을 찾아내는 과정을 통하여 이루어집니다. 하지만, 환자의 데이터로부터 항암 효과와 인과 관계가 있는 유전자 변이를 찾아내는 과정은 매우 어렵습니다. 암세포에서 유전자 변이는 수천 개 이상이 존재하며, 치료 효과와 유의한 연관성을 분석하기에는 환자의 데이터가 일반적으로 매우 적습니다.

 

이러한 문제를 해결하기 위해 Feature selection을 filter method와 wrapper method를 혼합 사용하여 해결하는 방식을 제안하였습니다. 많은 feature를 1차 적으로 걸러내기 위해 filter method로서 cox regression의 결과를 사용하였습니다. 2차 적으로는 치료에 긍정적인 유전자 변이를 확인하기 위해 wrapper method로서 강화학습 기반의 meta-heuristic feature selection으로 유전자 변이 정보를 찾아내는 방법을 제안하여 사용하였습니다.

 

감사합니다.