KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

2024/09 2

Point-based image editing: DragDiffusion

안녕하세요. 안녕하세요. KDST팀 김유진입니다. 9월 27일에 진행했던 Point-based image editing에 대한 세미나 내용을 간략하게 요약해보도록 하겠습니다. 이번에 소개해 드릴 논문은 CVPR 2024에서 Highlight를 받은 "DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing" 입니다. Point-based image edit이란 사용자가 먼저 주어진 이미지에서 Handling point와 Target point pair를 여러 개 지정 후, 모델이 해당 이미지에서 의미론적으로 일관된 편집을 수행하여 Handling point의 content를 target point로 이동하여 이..

카테고리 없음 2024.09.30

Posterior Distillation Sampling

안녕하세요. KDST 박민철입니다. 이번 공유 내용에서는 최근 파라미터 기반의 이미지 생성 모델에서 고려되어야 할 두 가지 핵심 사항 ((1) 텍스트 프롬프트와 생성된 이미지의 일치성 및 파라미터를 터치하는 source content의 identity와 유사한 보존적 특성을 갖는 것)을 효과적으로 달성하기 위해 제안된 Posterior Distillation Sampling, CVPR 2024 논문을 소개드리고자 합니다. 논문의 도입에서 기술하는 내용을 잠시 살펴보면, 2D 이미지를 생성하는 diffusion 모델들은 Internet-scale의 이미지와 text 데이터셋에 힘입어 상당히 강력한 generative prior을 갖게 되었지만, 이들의 강력한 2D generative prior는 광범위한 ..

카테고리 없음 2024.09.11