KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

2023/11 2

Feature Separation and Recalibration for Adversarial Robustness (CVPR 2023 Highlight)

안녕하세요 KDST 학부연구생 구미진입니다. 오늘 소개해드릴 논문은 CVPR 2023 Highlight 논문인 Feature Separation and Recalibration for Adversarial Robustness 입니다. 본 논문에서는 적대적 공격에 대한 방어 방법 중 Adversarial Training 방법과 결합해서 사용할 수 있는 FSR 모듈을 제안했습니다. Motivation 딥러닝 모델은 위 그림처럼 이미지의 Feature representation을 학습하여 의사 결정을 내립니다. 적대적 공격은 이미지에 미세한 노이즈를 추가하여 모델의 오분류를 유도하는데, 기존의 방어 방법은 변화가 생긴 활성화를 그냥 무시함으로써 공격에 대응하고자 했습니다. 그러나 이 방법은 중요한 정보의 손실..

카테고리 없음 2023.11.29

One paper accepted at NeurIPS 2023

올해 12월에 뉴올리언스에서 열리는 NeurIPS 2023에 아래 논문이 채택되었습니다. 이 논문은 딥러닝 초기에 중요한 역할을 했던 tanh 활성화 함수가 왜 ReLU 등 그 이후의 활성화 함수에 비해서 상대적으로 성능이 좋지 않은지 그 이유를 분석합니다. 또한, 그 단점들을 극복하고, ReLU 활성화 함수와 비슷한 성능을 달성하는 방법을 제시합니다. 결론적으로 활성화 함수의 비대칭성이 얼마나 중요한지를 보여주며, 이를 통해 활성화 함수에 대한 이해를 깊게 하고 있습니다. "Tanh Works Better with Asymmetry"

카테고리 없음 2023.11.26