본 게시글은 Generative Adversarial Networks(GAN)를 공부하며 흥미로웠던 CycleGAN에 대한 포스팅입니다. 해당 논문은 버클리 AI Research (BAIR) lab에서 진행된 연구로, 2017년 ICCV에 accept되었습니다. 해당 논문을 참조하시려면 논문 링크를 클릭해주세요. CycleGAN은 training set이 {X,Y} 처럼 paired data가 아닌 unpaired된 data인 경우, source 도메인 X에서 target 도메인 Y로 이미지를 변환하는 image-to-image translation 방식입니다. 아래의 예시는 CycleGAN을 활용했을때의 두가지의 도메인에 대해서 이미지를 translation 하는 예시입니다. 이러한 두가지 도메인에 대..