이번 글에서는 CVPR 2021에 oral로 선정된 “Knowledge Evolution in Neural Networks”란 논문을 소개합니다. 본 논문은 적은 수의 데이터 셋에서 모델을 효과적으로 학습시킬 수 있는 Knowledge evolution이라는 학습 방법론을 제안합니다. History 본 논문은 “The lottery ticket hypothesis: Finding sparse, trainable neural networks” 논문을 이론 배경으로 가집니다. The Lottery ticket hypothesis는 dense network에 적은 iteration 수에서 자신보다 높은 성능을 가지지만 파라미터 수는 더 적은 subnetwork가 존재한다 라는 것입니다. 이러한 가설에 맞는 s..