KDST

KDST는 딥러닝을 중심으로 AI와 데이터에 관련된 여러 주제에 대해서 연구하는 팀입니다.

분류 전체보기 102

NaturalInversion: Data-Free Image Synthesis Improving Real-World Consistency (AAAI-2022 accept)

안녕하세요. KDST&고려대학교 컴퓨터학과 박사과정생 김유진 입니다. 이번에 김수현 박사님, 박도균 연구원님, 김도희 학연님과 제출했던 논문이 AAAI-2022에 accept 되었습니다. 함께 많은 노력을 기울여주신 모든 저자들께 다시한번 감사의 말씀을 전합니다. 논문 제목은 "NaturalInversion: Data-Free Image Synthesis Improving Real-World Consistency" 입니다. 해당 논문 코드: https://github.com/kdst-team/NaturalInversion 본 논문에서 제안하는 NaturalInversion은 Data-free 환경에서 pre-trained classifier를 활용하여 모델이 학습했던 분포와 유사한 이미지를 만들어냅니다...

카테고리 없음 2021.12.28

디지털 헬스 해커톤 2021 최우수상(공동 1위) 수상

안녕하세요, KDST에서 학생 연구원으로 근무 중인 강민수입니다. 이번에 강민구 전문연구 요원님, 김동진 학생 연구원님과 함께 Team 'Machine Running'으로 함께 참여했던 성균관대학교 삼성융합의과학원(SAIHST) 디지털 헬스 학과와 디지털 헬스케어 파트너스(DHP)가 공동 주최하는 제 6회 Digital Health Hackathon 2021에서 공동 1위로 최우수상을 수상하였습니다. 해커톤 주제는 'bio-health simulation data를 이용하여 치료의 효과를 증가시키는 인과관계가 있는 유전자를 찾아내는 것'입니다. 환자 맞춤형 치료는 특히 암 환자의 맞춤형 항암 치료 분야에서 뚜렷한 성과를 보입니다. 이는 암 유전자 분석을 통해 변이 유전자에 타깃이 되는 약물을 찾아내는 과..

카테고리 없음 2021.10.25

DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation

안녕하세요. 오늘 소개드릴 논문은 AAAI'2021에 게재된 DegAug입니다. 논문 제목에서 알 수 있듯이 Feature representation을 나누고 semantic augmentation을 통해 Out-of-Distribution generalization을 달성한 논문입니다. About Out-of-Distribution 논문에 대한 내용에 앞서 IID와 OoD의 개념을 말씀드리겠습니다. Independent, Identical Distribution (I.I.D)→예를 들면 CIFAR10의 train-set과 test-set이 나눠져 있지만 그 둘은 동일한 분포를 가지고 있습니다. 따라서 이 둘은 I.I.D입니다. 어떤 랜덤 확률 변수 집합이 있을 때 각각의 랜덤 확률변수들은 독립적이면서 ..

카테고리 없음 2021.09.18

Revisiting Knowledge Distillation: An Inheritance and Exploration Framework (CVPR 2021) 논문 리뷰

이번에는 CVPR 2021에 poster paper로 accept 된 Revisiting Knowledge Distillation: An Inheritance and Exploration Framework을 리뷰하려고 합니다. 자세한 내용은 원문을 참고해주세요. 코드의 경우, 비공식 코드로 구현해두었습니다. Introduction Class distribution사이에서 similarity와 consistency의 정보를 전달함으로써 knowledge distillation 분야가 성공할 수 있었다고 저자는 말하고 있습니다.(Hinton의 KD, Tf-KD etc.) 또한, layer 중간의 output에서 feature representation을 transfer하는 방법도 성공을 이끌었다고 말하고 있..

카테고리 없음 2021.08.26

Manifold Regularized Dynamic Network Pruning (CVPR 2021) 논문 리뷰

이번 글에서는 CVPR 2021에 accept된 Pruning 논문 중 하나인 Manifold Regularized Dynamic Network Pruning 을 리뷰하도록 하겠습니다. 먼저 Dynamic pruning에 대해 알아보겠습니다. 기존의 channel pruning 방식들은 channel을 static하게 제거하기 때문에 모든 sample에 같은 구조의 network를 사용합니다. 하지만 실제로는 filter/channel의 중요도는 input에 따라 매우 다릅니다. 아래 그림은 Dynamic pruning을 처음 제안한 Dynamic channel pruning: Feature boosting and suppression 에서 가져왔습니다. Pretrained ResNet-18로 image..

카테고리 없음 2021.07.01

Representative Batch Normalization with Feature Calibration(CVPR 2021) 논문 리뷰

이번 글에서는 CVPR 2021에 oral로 선정된 “Representative Batch Normalization with Feature Calibration”이란 논문을 소개합니다. 본 논문은 기존의 Batch normalization의 문제를 분석하고 이를 보완하는 Representative Batch normalization을 제안합니다. Introduction Batch Normalization의 효과를 감소시키는 요인 Batch Normalization(BN)은 convolution 연산의 결과로 나온 feature들을 mini-batch의 통계 정보를 사용하여 normalize 된 분포로 제한하는 과정을 수행합니다. 이 과정은 학습의 어려움을 낮춰 CNN 모델의 성능을 가져왔습니다. 하지만,..

카테고리 없음 2021.06.27

Revisiting Knowledge Distillation via Label Smoothing Regularization (CVPR, 2020) 논문 리뷰

이번에는 CVPR 2020에 Oral session에 발표된 논문인 Revisiting Knowledge Distillation via Label Smoothing Regularization을 리뷰하려고 합니다. 논문은 링크를 참조해주세요 Background Geoffrey Hinton 이 2014년 NeurIPS에 발표한 Distilling the Knowledge in a Neural Network 이후로 분야가 개척되어왔습니다. Knowledge Distillation에서 Hinton이 발표한 방식은 pretrained teacher model의 logits과 student모델의 logits의 soft-target을 구해서 KL Divergence를 취해서 서로 분포간의 거리를 좁히는 방식으로 학습..

카테고리 없음 2021.06.22

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NIPS 2020) 논문 리뷰

이번에는 NIPS 2020 Poster session에 발표된 논문인 AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning 을 리뷰하려고 합니다. 논문은 링크를 참조해주세요 Background and Introduction 우선 Mutli-task learning이라는 게 어떤 것일까요? Multi-task learning은 task가 여러 개라는 것인데 큰 dataset $D$ 아래에 다른 dataset $D_{i}$로 구분된 $D=\{D_1, ... , D_i \}$ 를 사용하는 learning method를 말합니다. Multi-task learning의 종류에는 크게 두 가지 기준인 feature와 method으로 분류합니..

카테고리 없음 2021.05.25

Knowledge Evolution in Neural Networks 논문 리뷰

이번 글에서는 CVPR 2021에 oral로 선정된 “Knowledge Evolution in Neural Networks”란 논문을 소개합니다. 본 논문은 적은 수의 데이터 셋에서 모델을 효과적으로 학습시킬 수 있는 Knowledge evolution이라는 학습 방법론을 제안합니다. History 본 논문은 “The lottery ticket hypothesis: Finding sparse, trainable neural networks” 논문을 이론 배경으로 가집니다. The Lottery ticket hypothesis는 dense network에 적은 iteration 수에서 자신보다 높은 성능을 가지지만 파라미터 수는 더 적은 subnetwork가 존재한다 라는 것입니다. 이러한 가설에 맞는 s..

카테고리 없음 2021.05.24

Temporal Spike Sequence Learning via Backpropagation for Deep Spiking Neural Networks 논문 리뷰

이번 글에서는 NeurIPS에 Spotlight로 선정된 “Temporal Spike Sequence Learning via Backpropagation for Deep Spiking Neural Networks” 논문을 소개해드리려고 합니다. 해당 논문의 자세한 내용은 링크와 github를 참고해주세요 Introduction - Spiking Neural Network(SNN)은 뇌의 행동을 모방하여 동작할 수 있는 모델로 기존 DNN(Deep Neural Network)와 달리 Time data 또한 영향을 끼치는 모델입니다. 최근 DNN의 많은 에너지 사용 대신 효율적으로 사용하는 뇌를 모방하여 전성비를 올리기 위한 목적으로 Neuronmorphic chip과 더불어 SNN이 개발되고 있습니다. -..

카테고리 없음 2021.05.04